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Abstract

Detecting domain shift and updating ML
pipeline appropriately is crucial in real-world
ML systems. We argue that using labeling func-
tion outputs rather than downstream model out-
puts is a more effective method for detecting
domain shift. We propose a lightweight and
simple framework that converts discrete label-
ing functions to continuous functions and ap-
plies density estimation method to detect out-
of-distribution samples in test time. We analyze
the performance of our proposed approach on
three real-world datasets on binary sentiment
analysis task, and show that our approach is
effective at detecting domain shift.

1 Introduction

Labeling functions (LFs) are a lightweight and cost-
effective way to generate labels in unlabeled data.
However, in real-world applications, data shift be-
tween the train and test datasets can occur, result-
ing in inaccurate labeling functions and degraded
downstream model performance. This data shift
can occur for a variety of reasons, such as changes
in data distributions, changes in domain-specific
features, and temporal changes in the data. In order
to ensure accurate model performance, the data sci-
entist must be able to detect such data shifts, and
take the appropriate action to update the labeling
functions.

There have been various approaches to detect
and solve domain shift; however, the work is lim-
ited to detecting domain shifts using the down-
stream model itself. This indicates that the de-
veloper must manually inspect and analyze the la-
beling functions in order to ensure high labeling
function quality whenever the shift is detected, re-
sulting in higher overhead to the developers.

We propose to detect domain shift from labeling
function outputs. We argue that using labeling func-
tion outputs is more beneficial than using model
outputs to detect domain shift. Behaviors of ma-

chine learning models, especially large language
models, are complicated to interpret and debug.
As such, even if the developer is informed about
domain shift, it will take more time and effort to de-
bug the model outputs and analyze data in order to
update labeling functions and models. On the other
hand, labeling functions are in general easier to
interpret and debug than machine learning models,
making it easier to why a domain shift is occurring
and how to address it. Moreover, labeling func-
tions are often faster to evaluate and update than
machine learning models, which is important in
the real-world deployments where data is changing
largely and rapidly, and the service needs immedi-
ate actions. Overall, our approach is lightweight
and efficient, and does not require additional data
or manual inspection of the labeling functions.

We analyze the performance of our proposed ap-
proach on three real-world datasets on binary senti-
ment analysis task, and show that our approach is
effective at detecting domain shift. We also com-
pare our proposed approach to the existing method
for detecting domain shift, and show that our ap-
proach is more accurate.

2 Background

2.1 Programmatic labeling

Deep learning models suffer from a label scarcity
bottleneck, as collecting and annotating large train-
ing data sets is time consuming and label intensive.
Programmatic labeling alleviates such bottleneck
by using labeling functions for labeling (Ratner
et al., 2016, 2017). Specifically, users encode weak
supervision sources, such as heuristics, knowledge
bases, and pre-trained models, to labeling functions
(LFs). A large set of training labels is collectively
generated by LFs with each labeling a subset of the
data.

Some data points may have conflicting labels
because the labeling functions are noisy and have



variable error rates. To deal with such cases, label-
ing models that aggregate the noisy output of LFs
with the final training labels are developed (Ratner
et al., 2017, 2019; Fu et al., 2020; Varma et al.,
2019).

A number of attempts have been made to extend
the scope of LFs that can be used. In CAGE (Chat-
terjee et al., 2020), continuous LFs are supported
in conjunction with existing label models. NPLM
(Yu et al., 2022) provides partial LFs that output
a subset of class labels, and PLRM (Zhang et al.,
2021) allows the use of indirect LFs that are limited
to predicting unseen but related classes.

2.2 Domain Shift
Domain shift, or distributional shift, (Sun et al.,
2016) refers to a change in the data distribution be-
tween the train and test datasets. The over-reliance
on the training distribution makes the practical ap-
plication of artificial intelligence challenging, as
the performance of the model often degrades on
deployment. Distributional shifts arise naturally in
many downstream applications; any downstream
NLP model can degrade significantly when ex-
posed to new data, such as new vocabulary, ex-
pression, and writing style.

Several methods have been developed to combat
such problem; one of them is out-of-distribution
(OOD) detection, which is a technique for identify-
ing when a model is being applied to data that are
different from the train dataset. By detecting when
a model is being used on out-of-distribution data, it
is possible to flag the model predictions and either
reject them or adapt the model to better suit to the
new data.

2.3 Types of OOD detection
Methods for OOD detection could be classified
largely into three categories: methods that use (i)
predicted class probabilities, (ii) curated training
algorithms, and (iii) density estimation.

The most common OOD detection method is to
use the predicted class probabilities of the model as
a confidence score (Hendrycks and Gimpel, 2016).
Although the raw model output could be used, this
could be further improved by applying temperature
scaling to the logits (Liang et al., 2017) or utilizing
the intermediate features of the input (Shama Sastry
and Oore, 2019).

Some researchers devised training strategies
to detect OOD; one approach is to expose the
model to the outlier data during the training

phase (Hendrycks et al., 2018). A different ap-
proach proposed training classifier networks to be-
come less confident for OOD samples (Lee et al.,
2017), and a recent approach proposed an energy-
based method (EBM) interpreting softmax proba-
bilities as energy scores (Hsu et al., 2020).

OOD detection has also been achieved using den-
sity estimation. In a recent work (Lee et al., 2018),
Mahalanobis models the class conditional proba-
bility density functions of features at intermediate
layers of a DNN with Gaussian densities for in-
distribution (ID) samples. Each class conditional
Gaussian parameter is estimated using the empir-
ical mean and covariance of ID training samples
belonging to the class. At test-time, OOD detection
is done by computing confidence score from the
model output, where the score if expected to be
lower for OOD samples.

While existing approaches have shown success,
they are intended for downstream models, and
methods for detecting OODs have not been ex-
plored for labeling functions. To our best knowl-
edge, we are the first to address the domain shift
detection problem in labeling functions.

3 Method

3.1 Overview

Figure 1 shows an overview of our system. In train
phase, we develop discrete LFs using unlabeled
training data, and convert discrete LFs to continu-
ous LFs (Section 3.3). From the developed discrete
LFs, we label training data and use it to train the
downstream model. We train kernel density esti-
mator using outputs from continuous LFs (Section
3.4). In the test phase, we feed the outputs from the
continuous LFs to the trained kernel density estima-
tor to detect the OOD data batch. Details of each
part will be explained in the following sections.

3.2 Using LF output for OOD detection

Previous methods observe model outputs to deter-
mine if the input data instance is OOD. Specifically,
the most common method is to define a score func-
tion s(x) given an input x and classify the sample
as OOD if s(x) < δ where δ is a predefined thresh-
old (Hendrycks and Gimpel, 2016). Instead, in this
work, we observe the outputs of LFs to detect OOD.
The intuition behind the idea is that outputs of LFs
itself could work as optimal feature representations
of the input, as LFs are designed to identify im-
portant aspects of the data. Detecting changes in



Figure 1: Overview of our system

feature values could possibly indicate shift in data;
as an illustrative example, checking if the word
"kid" and "like" exists will successfully label the
toy reviews, e.g., "my kid likes it" as positive, but
it would not be able to properly label the review of
a book, e.g., "a true love story."

3.3 Converting to continuous LF
Instead of using outputs from discrete LFs, we con-
vert disrete LFs to continuous LFs. Algorithm 1
shows an example discrete LF for text sentiment
classification. It returns POSITIVE if the specified
keyword is in the text. Algorithm 2 is continuous
version of Algorithm 1. It first converts keyword
and words in the text to GloVe embedding (Pen-
nington et al., 2014), and calculates the cosine sim-
ilarity between the keyword and words in the text.
The mean of the top 10% cosine similarity values
is returned.

Figure 2 shows the benefit of converting discrete
LFs to continuous LFs. Figure 2a and 2b show the
T-SNE visualization of LFs’ outputs with IMDB
(Maas et al., 2011) and Yelp (Zhang et al., 2015)
dataset. The distribution of both datasets cannot be
distinguished when using discrete LFs; on the other
hand, it can be distinguished well when using con-
tinuous LFs. This is due to the fact that a discrete
LF can only output limited values (3 in the senti-
ment analysis task), thus not enough information
can be obtained from them.

The idea of converting discrete LFs to contin-
uous LFs by using word embedding and cosine
similarity is similar to CAGE (Chatterjee et al.,
2020). The continuous LFs from CAGE, however,
only return maximum cosine similarity values and
can only be used for spouse relationship extraction.

3.4 Kernel Density Estimation
Given the outputs of the continuous LFs, we apply
kernel density estimation (KDE) (Feinman et al.,
2017) to model the marginal feature probability

(a) 8 discrete LFs (b) 8 continuous LFs

Figure 2: T-SNE visualization of LF’s output

Algorithm 1 Discrete LF
function POSKEYWORDLF(text, keyword)

if keyword in text then
return POSITIVE

end if
return ABSTAIN

end function

density function from train data. Specifically, given
an input xi ∈ DTr

ID where DTr
ID is in-distribution

train data, let fxi be a vector of labeling function
outputs from xi. We estimate the marginal feature
probability density function p(f) based on Gaus-
sian kernel:

p(f) ≈ p̂(f) =
1

|DTr
ID|h

|DTr
ID|∑

j=1

K(f − fj
h

)

where h is a smoothing bandwidth and K(x) =
1√
2π
e−

x2

2 is a Gaussian kernel function. Given p̂(f)
and a predefined threshold δ, we can determine that
a new feature f ′ is OOD if p̂(f ′) < δ.

4 Evaluation Setup

We evaluated the performance with AUROC
(Bradley, 1997). AUROC means area under ROC
(Receiver Operating Characterisitic) curve, where
an ROC curve illustrates the diagnostic abilities of



Algorithm 2 Continuous LF
Require:

Vec(word) ▷ GloVe embedding of word
MeanTopK(input,k) ▷ Mean of top k input

function POSKEYWORDLF(text, keyword)
K ← Vec(keyword)
T ← Vec(word in text)
C ← CosSimilarity(K,T )
Num← MAX(len(text) ∗ 0.1, 1)

return MeanTopK(C,Num)
end function

binary classifiers as their discrimination threshold
is changed. AUROC measures the performance of
a binary classification model. An AUROC of 0.5
indicates that the classifier is no better than ran-
dom, while an AUROC of 1.0 indicates a perfect
classifier. In general, the higher the AUROC, the
better the performance of the classifier.

We measured labeling accuracy, which means
how accurately the label model (discrete LFs) la-
beled the dataset (25,000 instances). We used
Snorkel label model (Ratner et al., 2017) to com-
bine results of discrete LFs. The labeling accuracy
of ID is the result of applying the LFs of the ID
dataset to the ID dataset. In contrast, the labeling
accuracy of OOD is the result of applying the LFs
of the ID dataset to the OOD dataset.

We also measured coverage, which means how
much portion of the data could be labeled by the
label model. Keyword-based LFs may not label all
of the data, because they can return an ABSTAIN
value, which indicates that the data point has not
been labeled. Note that labeling accuracy is calcu-
lated only with labeled data points.

For the evaluation, we fixed the batch size to 16,
and smoothing factor of the kernel density estima-
tion to 0.05.

4.1 Datasets

We evaluate our method on a text sentiment analy-
sis task. We use 4 different datasets (IMDB (Maas
et al., 2011), Yelp Polarity (Zhang et al., 2015),
SST-2 (Socher et al., 2013), Amazon (McAuley
et al., 2015)) to simulate domain shift. SST-2 and
IMDB dataset contain movie review of varying
lengths. Yelp polarity dataset, on the other hand,
contains reviews of different businesses, which rep-
resents a shift in domain from the SST-2 and IMDB
datasets. Amazon review dataset contains prod-

uct reviews from Amazon, categorized by product
types. We chose 5 product types (baby, electronics,
jewelry, home, sports) among them.

For each dataset, we chose the first 25,000 data
instances from the train split. Within the chosen
25,000 data instances, we use first 20,000 data in-
stances for training, and last 5,000 data instances
for testing. For example, if we use IMDB dataset
as ID (in-distribution) and Yelp dataset as OOD
(out-of-distribution), training data is first 20,000
instances of IMDB and testing data is total 10,000
from last 5,000 instances of IMDB and Yelp.

4.2 Baselines

We compare our evaluation results to the paper that
detects OOD texts using large language models
(Arora et al., 2021). It is important to note that we
did not implement and experiment with the paper’s
method, but instead compared our performance
with the paper’s reported performance. As our
baseline study did not experiment on all pairs we
experimented with, we only compared the pairs
tested in the baseline paper.

4.3 Discrete LF development

We created keyword-based labeling functions for
IMDB and Yelp Polarity dataset separately using
Argilla(Argilla). Argilla provides web UI that we
can query unlabeled training data using keywords
and create keyword-based LFs. We created 22 LFs
for Yelp Polarity, and 31 LFs for IMDB. Developed
discrete LFs are further converted to continuous
LFs like Algorithm 2 for OOD detection. The list
of keywords that are used to contruct LFs are shown
in table 1.

5 Result

5.1 Overall Performance

Overall performance of our system is shown in Ta-
ble 2. All AUROC scores are close to 1, which
indicates that OOD samples are well detected with-
out satisfying FPR (False Positive Rate). We
achieved higher AUROC score compared to base-
line method.

We can also observe that the labeling accuracy
of the OOD data is comparable to ID data, but
the coverage of OOD data is significantly lower
compared to ID data. This result suggests that the
LFs are capable of identify certain aspects of the
data. Note that the coverage of continuous LFs



Label IMDB (Maas et al., 2011) Yelp (Zhang et al., 2015)
Positive impress, adorable, enjoy, excellent, beautiful, won-

derful, recommend, best, masterpiece, performance *
best, performance *good

recommend, amaze, love, fresh, clean, friendly, per-
fect, favorite, delicious, service * great, food * great

Negative terrible, poor, stupid, wrong, disappoint, painful, aw-
ful, boring, worse, worst, bad, cliche, killer, unnec-
essary, waste, least try, nothing * special, nothing *
even, performance * worst, acting * bad

leave, finally, terrible, understand, worse, worst, dis-
appoint, bad, awful, rude, wait

Table 1: List of keywords that are used for constructing LFs

ID OOD AUROC
Baseline
AUROC

Labeling accuracy
OOD (Coverage) ID (Coverage)

IMDB

Yelp 0.93 0.78 0.78 (0.57)

0.74 (0.82)

SST-2 1.00 0.97 0.87 (0.09)
Amazon-baby 0.96 0.78 (0.41)
Amazon-electronics 0.95 0.75 (0.42)
Amazon-jewelry 1.00 0.86 (0.39)
Amazon-home 0.98 0.80 (0.39)
Amazon-sports 0.99 0.79 (0.33)

Table 2: Overall performance

that are used for OOD detection is 100%, since
continuous LFs do not return ABSTAIN value.

5.2 Trade-off between batch size and AUROC

We identified a trade-off between batch size and
AUROC. Figure 3 shows the AUROC score of vary-
ing batch size when IMDB dataset is used as ID
and Amazon-baby dataset is used as OOD. AUC
increases as batch size increases, which means the
classifier is getting closer to ideal classifier. Such
phenomena is observed on all other combinations
of datasets.

The reason behind this is that we can observe
more data points at the same time, density estima-
tion results become more robust to noise, while sac-
rificing the precision of detection. In other words,
smaller the batch size, it is possible to detect do-
main shift in a fine-grained manner but could be
sensitive to noise, and vice versa.

6 Discussion and Future Work

6.1 Explainability

It is critical to provide explainability that helps to
deal with domain shifts. Through our method, we
are able to further identify which LFs are malfunc-
tioning. We can train a separate OOD detector for
each LFs. When the domain shift is detected on
global OOD detector, we can run each LF’s OOD
detectors and find out which LF is vunerable to

(a) Batch size 1 (b) Batch size 8

(c) Batch size 16 (d) Batch size 32

Figure 3: ROC curve and AUROC for varying
batch sizes on IMDB dataset (ID) - Amazon baby
dataset(OOD)

domain shift. Then engineers can adjust the LFs to
cope with domain shift.

6.2 Converting discrete to continuous LFs
In our work, we only used GloVe embedding (Pen-
nington et al., 2014) to convert discrete keyword-
based LFs to continuous LFs. It is possible to
convert in other ways, like using Bert (Devlin et al.,
2018) or FastText (Joulin et al., 2016) embedding
methods. Other than word embeddings, there may
be another way to convert.



Additionally, the labeling functions used in this
study were only keyword-based. We can also use
other labeling functions such as subjectivity and
polarity analysis from TextBlob (TextBlob).

6.3 Coverage as OOD predictor
During the experiment, we identified that the cov-
erage of the labeling model significantly dropped
when confronting OOD samples. Labeling func-
tions identify certain aspects of data, so this is con-
sidered natural behavior. Using this coverage value
as an OOD predictor may also be useful.

6.4 More experiments
We only evaluated on text sentiment analysis tasks.
It would be helpful to evaluate the system on other
NLP tasks like topic classification and relation clas-
sification. It would also be beneficial to evaluate it
in other domains like vision.

7 Division of roles

Two authors equally contributed to the project. The
work of 20223137 Yewon Kim primarily focused
on developing a domain shift detection algorithm
using kernel density estimation given continuous
LFs, while the work of 20224560 Seungjoo Lee
primarily focused on developing a method for con-
verting discrete to continuous LFs. All the other
works, including ideation, literature search, evalu-
ation, discussion, and paper writing were equally
contributed by the authors.
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