BeatSaver: Conducting Gestures to Metronome Beats

Ryuhaerang Choi, Yewon Kim
Korea Advanced Institute of Science and Technology (KAIST)
{ryuhaerang.choi, yewon.e.kim}@kaist.ac.kr

Abstract

A conductor is a messenger for the composer, and musicians’
duty is to fully understand the conductor’s messages through
gestures and produce unified music in a musical ensemble.
However, in many cases where the conductor is absent, mu-
sicians inevitably resort to their faint memories or abstract
note-taking to infer the conductor’s instructions. To revamp
this limitation, we propose BeatSaver that converts conducting
gestures to metronome beats. Musical details that a conductor
instructed are recorded in beats and dynamics so that musi-
cians can refer to even when they are practicing on their own.
BeatSaver consists of Time Signature Classifier, Beat Detec-
tor, and Musical Dynamics Classifier, which we prove their
effectiveness through real-world experiments. BeatSaver is
lightweight and practical as it only utilizes Arduino Nano 33
BLE Sense attached to the conducting baton and an external
server to extract the details after the practice session, making
it easily applicable in the wild.

1 Trajectory Tracking

Tracking the trajectory of a user using inertial measurement
unit (IMU) sensors have been studied over the last two
decades [10, 13, 18,21]. In this paper, we tried to build an
accurate trajectory tracking method using Arduino Nano 33
BLE Sense [1]. We focused on minimizing sensor errors to
improve the performance of trajectory tracking.

1.1 Manual Sensor Calibration
When sensors are not calibrated, the outputs of them may vary

per instance on chip [25]. Therefore, we manually calibrate
the sensors in the following steps:

1. Place Arduino Nano 33 BLE Sense on a flat table
2. Install and run LSM9DSI Library to Arduino Nano 33
BLE Sense
3. Start accelerometer calibration
(a) Measure X-, Y-, and Z-axis in both directions
(b) Calculate offset of accelerometer
4. Start gyroscope calibration

S X-axis Y-axis Z-axis

ensor offset offset offset
Accelerometer | -0.021173  0.001834  0.012719
Gyroscope 0.031862 -0.421852 -0.025839

Table 1: The accelerometer’ and gyroscope’ offset values of
the sensor. The offset values are not the same for all modules.

(a) Measure offset of gyroscope’s each axis while ro-
tating Arduino Nano 33 BLE Sense over rotation
axis

(b) Calculate offset of gyroscope

The results of offsets are in Table |. We compensate the
offsets by modifying the Arduino LSM9DSI library before
starting trajectory tracking (See Fig. 1).

1.2 Position Estimation

After sensor calibration, we explored sensor readings while
moving the sensor. We observed that several unexpected peaks
might make huge errors when we estimate the position of the
sensor using the values. To reduce the impact of such peaks
in sensor readings, we estimated the position based on the
mean value of three consecutive sensor readings. Figure 2
describes how we estimate position in X, y, and z axis. The
output, D, of function avg is the set of average values of the
variables, the group of raw sensor readings. The function PE
takes sensor readings from the accelerometer and gyroscope
as input and estimates the position, P = {x,y,z} of the sensor.
The sequence of the estimated position (i.e., {P;, P, P3,...})
is the trajectory of the sensor.

2 Trajectory Tracking: Evaluation

We followed the evaluation methods, test case #1 and #2, in
Project Overview document. The only difference is that the
ground truth is set to 20 centimeters. For each evaluation
method, we conducted the experiment twenty times.

The error is obtained by calculating the absolute difference
between the ground truth and the measurements in centime-



LSM9DS1.h

// Accelerometer Calibration
float accelOffset[3] = {acc_x_offset, acc_y_offset, acc_z_offset};
float accelSlopel[3] = {acc_x_slope, acc_y_slope, acc_z_slope};

// Gyroscope Calibratio
float gyroOffset[3] = {gyro_x_offset, gyro_y_offset, gyro_z_offset};
float gyroSlope[3] = {gyro_x_slope, gyro_y_slope, gyro_z_slope};

(a) Add new variables representing the offsets to be calibrated in LSM9DS1.h
in Arduino LSM9DSI library.

LSM9DS1.cpp

int LSM9DS1Class::readAcceleration(float& x, float& y, float& z)
{
intl6_t datal3];
if (!readRegisters(LSM9DS1_ADDRESS, LSM9DS1_OUT_X_XL, (uint8_tx)data,

sizeof(data))) {
x = NAN; y = NAN; z = NAN;
return 0;

¥
//x = datal@] *x 4.0 / 32768.0;
//y = datal1] % 4.0 / 32768.0;
//z = datal2] * 4.0 / 32768.0;
x = accelSlope[@] * ((4.0 * datal[@] / 32768.0) - accelOffset[0]);
y = accelSlopel[1] * ((4.0 * datal[l1] / 32768.0) - accelOffset[1]);
z = accelSlopel[2] * ((4.0 * datal[2] / 32768.0) - accelOffset[2]);
return 1;

}

int LSM9DS1Class::readGyroscope(float& x, float& y, float& z)

{
intlé_t datal3];
if (IreadRegisters(LSM9DS1_ADDRESS, LSM9DS1_OUT_X_G, (uint8_tx)data,

sizeof(data))) {

X = NAN; y = NAN; z = NAN;
return 0;
}
//x data[@] * 2000.0 / 32768.0;
/1y datal[l1] * 2000.0 / 32768.0;
//z datal2] * 2000.0 / 32768.0;

x = gyroSlope[@] * ((datal@] x 2000.0 / 32768.0) - gyroOffset[0]);
y gyroSlope[1] * ((datall] * 2000.0 / 32768.0) - gyroOffset[1]);
z = gyroSlope[2] * ((datal2] x 2000.0 / 32768.0) - gyroOffset[2]);
return 1;
}

(b) Compensate offsets by modifying accelerometer and gyroscope sensor
readings in LSM9DS1.cpp in Arduino LSM9DSI library. The code lines
commented out are the original codes.

Figure 1: Accelerometer and gyroscope calibration codes.

ters. For the first test case, the average and standard deviation
of errors were 2.75 and 1.39, respectively, in a centimeter
scale. For the second test case, the average and standard devi-
ation of errors were 4.75 and 3.50, respectively in a centimeter
scale.

3 BeatSaver: Motivation and Background

3.1 Introduction

Conducting is crucial in musical ensembles so that musicians
can play unified music that the conductor intends to convey
to the audience. However, the conductor is not always present
in the practice room; it is common for musicians to practice
independently and meet their conductor every fixed interval
of time, e.g., one week. Therefore, when practicing without
the conductor, musicians often heavily depend on their faint
memory or abstract note-taking to infer the details that the
conductor instructed. In other words, although it is important
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Figure 2: Diagram of position estimation process.

for the performer to remember the conducting details, there
is no tool that helps musicians do so.

There have been several attempts to track conducting ges-
tures using video recordings [2, 3,6, 14]. However, it is often
hard to place a camera and record the gesture correctly in
a small and crowded practice room. Moreover, vision ap-
proaches often involve privacy-related issues, which makes
the system not widely applicable [20].

To provide a better practicing environment for performers,
we present BeatSaver, an automatic recording system that
converts conducting gestures into metronome beats. Beat-
Saver only utilizes Arduino Nano 33 BLE Sense [1] that is
small enough to attach to a tip of a conducting baton. The
recorded data are passed to an external server where we use
Time Signature Classifier, Beat Detector, and Musical Dy-
namics Classifier to generate beats and dynamics from the
conducting gestures.

3.2 Related Work

Mobile sensing technologies that utilize sensors from mo-
bile devices provide diverse services such as human activ-
ity recognition [11,24], gesture recognition [22,26], health-
care [16], and authentication [5, 15, 17]. Few works have
tackled the problem of recording conducting details by using
depth camera or leap motion sensors that utilize vision infor-
mation [2,3, 6, 14]. However, placing such sensors in front of
a conductor while practicing is difficult because the device
can block the musician’s view, and the practice room is often
small and crowded. Moreover, vision approaches often raise
privacy-related issues and require high computational cost,
which keeps the system from being widely applicable [20].
One study proposes a similar idea to utilize sensors, yet the
authors do not propose detailed methods to realize the sys-
tem [14].

4 BeatSaver: System Design

4.1 Overview

We consider a scenario where a conductor conducts a musical
ensemble, e.g., orchestra or chorus, with a conducting baton
where an IMU sensor is attached to its tip. The goal of Beat-
Saver under the scenario is to record the beats and dynamics
of conducting gestures so that the musical ensemble can refer
to even when the conductor is not present, e.g., when prac-
ticing on their own. Figure 3 illustrates the workflow of our



framework. BeatSaver trains two deep learning models: 7ime
Signature Classifier that classifies the time signature, and Beat
Detector that classifies whether the beat has changed, given
accelerometer and gyroscope readings. We provide further
details in section 4.2 and section 4.3. Given the detected beat
sequences, we use Trajectory Tracker defined in section | to
extract the length of the trajectories between detected beats.
Using the extracted lengths, we statistically induce the thresh-
old length between two representative dynamics: piano and
forte, which we simply call Dynamics Classifier. We detail
this process in section 4.4.

4.2 Time Signature Classifier

Time signature is an abbreviation for the music’s rhythms;
for example, the time signature of 4/4 means that four beats
are equivalent to one measure. This project considers three
kinds of time signatures for simplicity: 2/4, 3/4, and 4/4. We
utilize the fact that conducting gestures for each time signature
differs (see Figure 4), which makes it possible to use only
accelerometer and gyroscope data to detect the time signature.
We apply traditional deep learning approaches to train Time
Signature Classifier. Model hyperparameters are detailed in
section 5.1.2.

4.3 Beat Detector

4.3.1 Detecting Moment that Beat Changes

After the time signature is detected, we use corresponding
Beat Detector to determine whether the beat was changed
within the input data chunk. We train three types of Beat De-
tector for each time signature: 2/4, 3/4, and 4/4. The gestures
that indicate beat change are illustrated as white circles in
Figure 4. We train a deep-learning-based classifier that re-
ceives accelerometer and gyroscope data recorded for a fixed
duration and outputs True if the input sensor data includes
a beat change. We train two kinds of beat detectors: binary
classifier and multi-class classifier. A binary classifier returns
true if any beat change is detected, while a multi-class classi-
fier differentiates each gesture indicating beat changes. As a
result, a multi-class classifier of time signature N/4 has N + 1
classes, e.g., { Ist beat change, 2nd beat change, not changed }
for 2/4 time signature.

Rather than training one unified beat detector, we train three
separate detectors for each time signature since some gestures
of beat change are hard to distinguish from the gestures that
do not indicate beat changes. Specifically, in Figure 4, we
can observe that the drastic angular changes indicate the beat
change in most cases, as illustrated in the gestures of time
signatures 2/4 and 3/4. However, in the gesture of time signa-
ture 4/4, two of the beats change with relatively fewer angular
changes, which makes training a unified model difficult. We
conducted an exploratory experiment by integrating all data
and training the unified model and found out that the perfor-
mance was deficient (34.7% in accuracy). We reckon that
a larger amount of data and a more complex deep learning

model structure will solve the issue, yet we leave this as future
work.

4.3.2 Ensemble Learning Approaches

From the experiments, we observed that the outputs of the
single trained model result in relatively low accuracy (73.3%
on average), possibly due to a lack of data. To revamp the
issue, we take ensemble learning approaches to obtain more
reliable results. We combine the predictions of several es-
timators trained with diverse structures and configurations.
Specifically, we train various classical convolutional neural
networks and long short-term memory (LSTM) networks,
with configurations including varying batch sizes, random
seeds, optimizers, data preprocessing protocols, and the num-
ber of classes. Here, the data preprocessing protocols mean
whether to down-sample the data for even distributions or not,
which is detailed in section 5.1.1. The number of classes are
explained in section 4.3.1. From the trained models, we select
the ones whose best model’s validation accuracy is higher
than 80% and determine the prediction with a majority vote.

4.4 Musical Dynamics Classifier

The musical dynamics is the variation in loudness between
notes and phrases in music. In score, it is represented by spe-
cific musical notations (e.g., pp, mp, mf, and ff). When con-
ducting, the conductor expressed musical dynamics through
the relative volumes of the conducting gestures. In addition
to recording each beat and type of beats, BeatSaver identifies
the musical dynamics from conducting gestures.

4.4.1 Tracking baton-tip trajectory

The volume of conducting gesture, which implies the musical
dynamics, directly matched with the length of the baton-tip
trajectory. Therefore, BeatSaver determines musical dynam-
ics the conductor represented by measuring the length of
baton-tip trajectory. The methods for trajectory tracking are
described in section 1. On top of the trajectory tracking meth-
ods, we segment the baton-tip trajectories by each beat which
can be obtained from Beat Detector.

4.4.2 Statistical threshold

We estimated every trajectory of the conducting in the dataset
used in this paper and statistically analyzed their lengths.
When the musical dynamics is piano (p), the mean and stan-
dard deviation of trajectory length is 26.59 (cm) and 7.76 (cm)
respectively. When it comes to forte (f), the mean and stan-
dard deviation of trajectory length is 48.35 (cm) and 1.53 (cm)
respectively. Because there is a gap between the length of tra-
jectories when musical dynamics is p and f, we decided to
set a threshold to determine the musical dynamics between
different dynamics. For BeatSaver we implemented, threshold
for section 4.4 set to 40.00 (cm).
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Figure 4: Conducting gestures of three kinds of time signa-
tures used in the project.
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Figure 5: Arduino Nano 33 BLE Sense attached to the con-
ducting baton.

5 BeatSaver: Evaluation

5.1 Settings
5.1.1 Data Collection

We detail the data collection protocol and preprocessing meth-
ods of our dataset. We used Arduino Nano 33 BLE Sense for
collecting data. We increased the sampling rate of the sensor
from the default value of 119Hz to 476Hz. To simulate a
scenario where the sensor records conducting gestures, we
attached the Arduino Nano 33 BLE Sense [1] to the tip of the
conducting baton [19]. (see Figure 5)

Each data collection session started by generating five syn-
chronization pulses by knocking the sensor with a hard object.
We video-recorded the gestures for a labeling purpose. Each
session lasted 5 minutes, and total of 24 sessions were held
to collect 120 minutes of raw data (40 minutes per each time
signature.) We differentiate the dynamics of the conducting
gestures: piano and forte. Each dynamics takes 20 minutes per
each time signature. The collected data was hand-annotated
against video recordings. We recorded timestamps of every

beat change using BORIS software [4].

We recorded each x, y, and z-axis values of accelerome-
ter and gyroscope at the maximum sampling rate and down-
sampled data to 399Hz. We divide the data with the window
length of 133 or 266 with an overlapping ratio of 0.5. Window
length of 133 is used for Beat Detector, and the length 266
is used for Time Signature Classifier to capture long-term
data information. Data processed by the window length was
labeled to include "beat change" if the data instance with the
timestamp that beat change was detected was included in the
data chunk.

5.1.2 Implementation

We design Time Signature Classifier with 1D-convolutional
neural networks (CNN) followed by fully-connected (FC)
layers, since CNN is commonly used in mobile sensing
fields [7, 8]. Specifically, the model consists of five CNN
layers and three FC layers. Rectified Linear Unit (ReLU) is
used for activation function. We train the model with Adam
optimizer and learning rate of 0.001, which is scheduled to
reduce with a ratio of 0.1 every 50 epochs. We train the model
for 200 epochs and select the best model with the highest
evaluation accuracy.

Three model structures are designed for Beat Detector for
ensemble learning. First is the same as Time Signature Classi-
fier. The second design is the lighter version of CNN, where
it has five simpler CNN layers and one FC layer. The learning
rate is set to 0.001, with the same learning rate scheduler as
Time Signature Classifier. For the last structure, we use unidi-
rectional long short-term memory (LSTM) network, which
consists of 50 hidden dimensions and two layers. The LSTM
network is connected with two fully-connected layers. We set
the learning rate as 0.01 with the same learning rate scheduler
as above.

We trained the models with various model hyperparameters
for ensemble learning (details in section 4.3.2.) Specifically,
we vary batch sizes (32 or 64), random seeds (0 or 1), opti-
mizers (Adam or SGD), data preprocessing protocols, and
the number of classes. For the data preprocessing protocol,
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Figure 6: Best accuracy of Time Signature Classifier.

we decide whether to down-sample the data or not to resolve
the imbalance between different classes. If down-sampled,
we match the number of data for each class to that of the
class with the least number of data. In terms of the number of
classes, we trained both multi-class and binary classifiers. A
multi-class classifier differentiates the order of beat-changing
gestures, while a binary classifier treats all beat-changing ges-
tures as one. Thus, a multi-class classifier of time signature
N/4 has N + 1 classes, e.g., Ist beat change, 2nd beat change,
not changed for 2/4 times signature. We also implement fea-
ture engineering of IMU data by calculating mean, standard
deviation, and variance of accelerometer and gyroscope val-
ues.

For the evaluation of Time Signature Classifier and Beat De-
tector, we used three different test data: conducting gestures
of each time signature, which lasts one minute each. We used
the same window size (266 for Time Signature Classifier and
133 for Beat Detector), but in the test phase, non-overlapping
data was fed to the classifier. We divided train, validation, and
test data so that no instance is overlapped.

5.2 Performance of Time Signature Classifier

Figure 6 reports the best accuracy achieved by Time Signature
Classifier on test dataset. In the latter two cases, the accuracy
is fairly high. Time signature 2/4, however, has an extremely
low accuracy of 8.571%. From the analysis, we recognized
that the model was highly overfitted to 4-beats data. It is a
reasonable result because conducting gesture of 2/4 is similar
to gesture sequence of 2-3-4 in time signature 4/4 (Figure 4).
Possible solutions would be increasing the window size or
collecting more data to prevent overfitting. We leave this as
future work.

5.3 Performance of Beat Detector

Figure 7 shows the accuracy of Beat Detector, accompanied
by the comparison with the single best model. Overall, we
could observe that ensemble learning approaches were effec-
tive in terms of accuracy, achieving an average accuracy of
82.577%.

100

85465 82 979

79.286
g0 {11342 74286
63.277

Accuracy (%)

20
single best model
I ensemble models

214 34 41

Figure 7: Comparison of the best accuracy achieved by single
model and ensemble models (Beat Detector.)

5.4 Performance of Musical Dynamics Classi-
fier

In BeatSaver, the relative trajectories are matter in order to
estimate the dynamics. Therefore, we visualize the estimated
trajectories in three-dimension space to investigate relativity.
Before visualization, we merged trajectories referring to the
beat type from Time Signature Classifier. The number of
trajectories which are merged is two for 2/4 beat type, three for
3/4 beat type, and four for 4/4 beat type, respectively. Figure 8
illustrates the visualized trajectories. From the visualized
trajectories, we observed that (1) the trajectories are similar
to each other, and (2) there is a difference in the length of
trajectories between different dynamics.

6 BeatSaver: Limitation and Discussion

6.1 Diversity of Time Signatures

In the project, we only considered three time signatures: 2/4,
3/4, and 4/4. The limitation of the BeatSaver is that the num-
ber of required Beat Detector increases as the diversity of
time signatures increases. We believe that with an increased
amount of data, we will be able to combine Time Signature
Classifier and Beat Detector into one classification model that
can extract beats from any conducting gestures.

6.2 Diversity of Musical Dynamics Expressions

Each conductor has a different conducting style, and each
musical dynamics is expressed in a different volume of con-
ducting gesture [9]. The number of conductors in the dataset
is limited to two, and their conducting styles were similar to
each other. Therefore, the threshold-based musical dynamics
classifier showed quite a reliable performance. However, as
the diversity of conductors increases in the real-world, the
performance of threshold-based will be significantly lower.
Therefore, it will be an alternative to display relative dynamics
(e.g., the same and the louder) using sequential models such
as LSTM [12] and Bayesian model [23]. Showing the relative
dynamics to one of the previous phases will be a breakthrough
to mitigate the diversity of conductors in the real-world.
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Figure 8: The results of visualizing five trajectories with each musical dynamics in a three dimensional space. Each trajectory is
randomly selected from the dataset and is identified in a different color.

6.3 Different Conducting Styles

We did not consider personalization in this project, yet the con-
ducting gestures vary depending on different conductors [9].
Applying fine-tuning technologies on the base model would
be required for the BeatSaver to be deployed in the wild.

6.4 Conclusion

In this project, we built a lightweight and practical conducting
recording system, BeatSaver, that is attachable to a conduct-
ing baton. BeatSaver infers (1) time signature, (2) beat, and
(3) musical dynamics achieves by collecting and analyzing the
IMU sensor data. BeatSaver achieves To our best knowledge,
BeatSaver is the first conducting recording system based on
only IMU sensor data. We believe BeatSaver can provide a
better practicing experience for musicians by recording con-
ducting details while not hindering conductors’ conducting
experience. We hope further works will deal with the technical
challenges we present in this paper.
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Availability

The code of BeatSaver is available at GitHub. The demo video
is also available at YouTube.
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